Relationship between gene expression and enhancement in glioblastoma multiforme: exploratory DNA microarray analysis.
نویسندگان
چکیده
PURPOSE To determine the difference in gene expression between completely versus incompletely enhancing glioblastoma multiforme (GBM). MATERIALS AND METHODS Gene expression was determined for 52 newly diagnosed GBMs by using DNA microarrays, and the relationship to enhancement pattern and survival was analyzed. This study was approved by the institutional review board and was HIPAA compliant; informed consent was obtained. RESULTS Thirty-eight percent (20 of 52) of GBMs were incompletely enhancing (IE). The expression of eight genes was increased more than twofold in IE GBM when compared with completely enhancing (CE) GBM. Among these were tight junction protein-2 (2.2-fold increase, P = .019), and the oligodendroglioma markers oligodendrocyte lineage transcription factor 2 (2.4-fold increase, P = .029) and Achaete-scute complex-like 1 (ASCL1; 2.7-fold increase, P = .023). The expression of 71 genes showed relative overexpression in CE when compared with IE GBM. These included several proangiogenic and edema-related genes, including vascular endothelial growth factor (2.1-fold, P = .005) and neuronal pentraxin-2 (3.0-fold, P = .029). Several genes associated with primary GBM were overexpressed in CE tumors, whereas ASCL1, which is associated with secondary GBM, was overexpressed in IE tumors. Many genes overexpressed in IE GBM were associated with longer survival, whereas several genes overexpressed in CE GBM correlated with shortened survival. CONCLUSION The enhancement pattern divides GBM in two groups with differing prognoses. By comparing gene expression between IE and CE GBMs, it was possible to identify genes that may affect magnetic resonance imaging features of edema and enhancement, and genes whose expression levels are predictive of both improved and shortened survival.
منابع مشابه
Gliomas Based on Oligonucleotide Microarray Analysis Distinctive Molecular Profiles of High-Grade and Low-Grade
Astrocytomas are heterogeneous intracranial glial neoplasms ranging from the highly aggressive malignant glioblastoma multiforme (GBM) to the indolent, low-grade pilocytic astrocytoma. We have investigated whether DNA microarrays can identify gene expression differences between highgrade and low-grade glial tumors. We compared the transcriptional profile of 45 astrocytic tumors including 21 GBM...
متن کاملExploratory Visual Analysis of Statistical Results from Microarray Experiments Comparing High and Low Grade Glioma
The biological interpretation of gene expression microarray results is a daunting challenge. For complex diseases such as cancer, wherein the body of published research is extensive, the incorporation of expert knowledge provides a useful analytical framework. We have previously developed the Exploratory Visual Analysis (EVA) software for exploring data analysis results in the context of annota...
متن کاملIntegrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression.
Glioblastoma multiforme shows multiple chromosomal aberrations, the impact of which on gene expression remains unclear. To investigate this relationship and to identify putative initiating genomic events, we integrated a paired copy number and gene expression survey in glioblastoma using whole human genome arrays. Loci of recurrent copy number alterations were combined with gene expression prof...
متن کاملEvaluation of Endoglin as an Angiogenesis Marker in Glioblastoma
Background and Objectives: Angiogenesis is essential for growth and metastasis of solid malignancies. Tumor vessel count and expression of vascular endothelial growth factor (VEGF), a potent angiogenic factor, have been associated with prognosis. This study was designed to assess vessels density by using CD31 and CD105 (Endoglin) and their correlation with expression of VEGF and prolif...
متن کاملTranscriptional changes in U343 MG-a glioblastoma cell line exposed to ionizing radiation.
Glioblastoma multiforme (GBM) is a highly invasive and radioresistant brain tumor. Aiming to study how glioma cells respond to gamma-rays in terms of biological processes involved in cellular responses, we performed experiments at cellular context and gene expression analysis in U343-MG-a GBM cells irradiated with 1 Gy and collected at 6 h post-irradiation. The survival rate was approximately 6...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Radiology
دوره 249 1 شماره
صفحات -
تاریخ انتشار 2008